Multi-path Bound Propagation for Neural Network Verification

Ye Zheng

Safety of Neural Networks

- Neural networks are sensible to natural or adversarial attack
- Safety need to be guaranteed in safety-critical scenarios
- Testing based methods can not provide safety guarantee (infinite images)

Autonomous-driving accident

Adversarial traffic sign

Neural Network Verification

- Verifies whether a region input results in unsafe outputs
- Input: a region (determined by an original image and a perturbation size)
- Output: safe or unsafe (need to compute the reachable region)

Image source: https://www.businessinsider.com/why-are-stop-signs-red

Neural Network Verification

- Difficulty: the composition of non-linear activations (e.g. ReLU) (NP-hard)
- Methods
 - Constraint solving
 - Encode the network as constraints and check the satisfiability with...
 - NP-hard
 - Bound propagation
 - Easier, but more efficient

- Propagates bound functions along the neural network
- Bound function is a pair of linear bounds

- Propagates bound functions along the neural network
- Bound function is a pair of linear bounds

- Propagates bound functions along the neural network
- Bound function is a pair of linear bounds

- Propagates bound functions along the neural network
- Bound function is a pair of linear bounds

- Propagates bound functions along the neural network
- Bound function is a pair of linear bounds

- Propagates bound functions along the neural network
- Bound function is a pair of linear bounds

- Propagates bound functions along the neural network
- Bound function is a pair of linear bounds

Our: Bound Propagation Path

Advantage: Accuracy Accumulation

- For each neuron
 - More accurate bound and over-approximation

Advantage: Accuracy Accumulation

- For each neuron
 - More accurate bound and over-approximation

<u>Multi-path Bound Propagation</u> for Neural Network Verification

Thank you!

